Left: Simulation of a bacteria growth by DLA method, Middle: Molecular dynamics simulation of a small system of atoms
Right: Band structure of a heavy fermion material.
This course is a continuation of Computational Physics course
(509). It introduces andvanced concepts and algorithms in
Computational Condensed Matter Physics and brings students to
the active research in Computational Condensed Matter area.
Lectures will be given in "hands on" style only, and students
should bring their own laptops to follow the lectures. Latops
should run python (including numpy, scipy, weave,
matplotlib) and should have C++ and fortran compiler installed.
This course requires familiarity with some basics of
programming languages such as Python (and a little of C++).
It is designed for the student who wishes to
broaden his/her knowledge of applications of computation and develop
techniques in Computational Physics.
Class Time: ARC building (108), 3:204:40pm on Monday
and Wednesday
Instructor: 
Kristjan Haule
Office: Serin E267
email: haule@physics.rutgers.edu
Phone: 445 5500, ext: 3881
Office hours: Monday 4 pm

If you are not yet familiar with Python, or you just want
to refresh your memory, check out some of these links:
 Learn Python in 10 minutes
 How to Think Like a Computer Scientist
 Python for beginners
 Dive Into
Python
 Code Like a Pythonista: Idiomatic Python
 Python documentation
 Python regular expressions
 Weave (to speed up
the Python code)
Prerequisite
 Set up the environment on your computer to be able to
code in Python or C++. The instructions from 509 can help.
Preliminary Course Outline and Tentative List of Topics include
 Perturbation theory at low orders
 Random numbers and multidimensional integration
 Monte Carlo methods and Simulated Annealing
 Parallel programming with MPI
 Exact diagonalization
 Quantum Monte Carlo methods
 Continuous Time Quantum Monte Carlo method
 Density functional theory
 Dynamical Mean Field Theory for model Hamiltonians
 Local Density Approximation + Dynamical Mean Field Theory (LDA+DMFT)
Optional:
 Molecular dynamics simulation
Literature:
Students with Disabilities